Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Med Virol ; 94(12): 5802-5807, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1990495

ABSTRACT

The global outbreak of coronavirus disease 2019 (COVID-19), an emerging disease caused by severe acute respiratory syndrome virus-2 (SARS-CoV-2), and strict restrictions implemented to control the infection have impacted the circulation and transmission of common seasonal viruses worldwide and subsequently the rate of hospitalizations in children at young ages. Respiratory syncytial virus (RSV) surprisingly disappeared in 2020-2021 in many countries due to lockdown and precautions were taken because of the COVID-19 pandemic. Herein, we showed a notable change in the rate of hospitalization and reported an unpredictable outbreak of RSV in a small proportion of children admitted to a children's hospital in Dezful (a city in Southwest Iran) in the early spring of 2022. We performed a descriptive study of hospitalized young children (aged ≤ 5 years) with acute respiratory infections. Together with clinical information, 30 nasopharyngeal swabs were prospectively collected and 3 important respiratory viruses (RSV, influenza viruses, and SARS-CoV-2) were tested through the real-time polymerase chain reaction (real-time PCR) method. The age distribution of 30 hospital-admitted children was 1 month to 5 years old and males were the most included subjects 18/30 (60%) in this study. Although the viral genome of SARS-CoV-2 and influenza viruses was not detected, the presence of RSV was confirmed in 16/30 (53.33%) patients. Results showed that the majority of RSV-infected cases were males 10/16 (62.5%), within 12 months of life, and had changes in parameters of the complete blood count. Almost all patients with RSV infection had a cough as the most common clinical manifestation and had no history of past medical conditions as a risk factor. The presented study is the first investigation that documented an outbreak of RSV infection in young children reported since the onset of the COVID-19 outbreak in Iran. Our cases highlight the potential threats of important but neglected pathogens during the ongoing pandemic as described here for RSV, which would be challenging by easing the preimposed restrictions.


Subject(s)
COVID-19 , Influenza, Human , Orthomyxoviridae , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , COVID-19/epidemiology , Child , Child, Preschool , Communicable Disease Control , Disease Outbreaks , Female , Humans , Influenza, Human/epidemiology , Iran/epidemiology , Male , Orthomyxoviridae/genetics , Pandemics , Real-Time Polymerase Chain Reaction , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics , SARS-CoV-2 , Viruses/genetics
2.
Int J Pept Res Ther ; 28(1): 33, 2022.
Article in English | MEDLINE | ID: covidwho-1826702

ABSTRACT

The structural consequences of ongoing mutations on the SARS-CoV-2 spike-protein remains to be fully elucidated. These mutations could change the binding affinity between the virus and its target cell. Moreover, obtaining new mutations would also change the therapeutic efficacy of the designed drug candidates. To evaluate these consequences, 3D structure of a mutant spike protein was predicted and checked for stability, cavity sites, and residue depth. The docking analyses were performed between the 3D model of the mutated spike protein and the ACE2 protein and an engineered therapeutic ACE2 against COVID-19. The obtained results revealed that the N501Y substitution has altered the interaction orientation, augmented the number of interface bonds, and increased the affinity against the ACE2. On the other hand, the P681H mutation contributed to the increased cavity size and relatively higher residue depth. The binding affinity between the engineered therapeutic ACE2 and the mutant spike was significantly higher with a distinguished binding orientation. It could be concluded that the mutant spike protein increased the affinity, preserved the location, changed the orientation, and altered the interface amino acids of its interaction with both the ACE2 and its therapeutic engineered version. The obtained results corroborate the more aggressive nature of mutated SARS-CoV-2 due to their higher binding affinity. Moreover, designed ACe2-baased therapeutics would be still highly effective against covid-19, which could be the result of conserved nature of cellular ACE2. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10989-021-10346-1.

3.
Front Immunol ; 12: 705772, 2021.
Article in English | MEDLINE | ID: covidwho-1376700

ABSTRACT

Autoimmune diseases (ADs) could occur due to infectious diseases and vaccination programs. Since millions of people are expected to be infected with SARS-CoV-2 and vaccinated against it, autoimmune consequences seem inevitable. Therefore, we have investigated the whole proteome of the SARS-CoV-2 for its ability to trigger ADs. In this regard, the entire proteome of the SARS-CoV-2 was chopped into more than 48000 peptides. The produced peptides were searched against the entire human proteome to find shared peptides with similar experimentally confirmed T-cell and B-cell epitopes. The obtained peptides were checked for their ability to bind to HLA molecules. The possible population coverage was calculated for the most potent peptides. The obtained results indicated that the SARS-CoV-2 and human proteomes share 23 peptides originated from ORF1ab polyprotein, nonstructural protein NS7a, Surface glycoprotein, and Envelope protein of SARS-CoV-2. Among these peptides, 21 peptides had experimentally confirmed equivalent epitopes. Amongst, only nine peptides were predicted to bind to HLAs with known global allele frequency data, and three peptides were able to bind to experimentally confirmed HLAs of equivalent epitopes. Given the HLAs which have already been reported to be associated with ADs, the ESGLKTIL, RYPANSIV, NVAITRAK, and RRARSVAS were determined to be the most harmful peptides of the SARS-CoV-2 proteome. It would be expected that the COVID-19 pandemic and the vaccination against this pathogen could significantly increase the ADs incidences, especially in populations harboring HLA-B*08:01, HLA-A*024:02, HLA-A*11:01 and HLA-B*27:05. The Southeast Asia, East Asia, and Oceania are at higher risk of AD development.


Subject(s)
Autoimmunity , COVID-19 Vaccines/immunology , COVID-19/immunology , Proteome/immunology , SARS-CoV-2/immunology , Viral Proteins/immunology , Autoimmune Diseases/etiology , Autoimmune Diseases/immunology , COVID-19/complications , COVID-19 Vaccines/adverse effects , Computer Simulation , Epitopes, B-Lymphocyte/immunology , HLA Antigens/immunology , Humans , Peptide Fragments/immunology , Peptide Library
SELECTION OF CITATIONS
SEARCH DETAIL